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Abstract. The predominant lipids in membranes obtained from apple buds
were galacto- and phospholipids. The major galactolipid components in
apple bud were monogalactosyl diglyceride (MGDG) and digalactosyl di-
glyceride (DGDG). Phosphatidylcholine (PC) and phosphatidylethanol-
amine (PE) were the major phospholipids in the apple buds. a-Linolenic
acid (C 18:3) was the major fatty acid in MGDG, DGDG, and PC. Phos-
phatidylglycerol (PG) is the only lipid to contain significant amounts of
palmitic acid (C 16:0) in the dormant buds. An increase in the galacto- and
phospholipids and the ratio of the unsaturated fatty acids to the corre-
sponding saturated fatty acids of the buds occurred as a result of induction
by 1-(3,5-dichlorophenyl)-3-nitroguanidine or I-(a-ethylbenzyl)-3-nitro-
guanidine during bud break. The identities of fatty acids in apple buds
were confirmed by gas chromatography—mass spectrometry.

Biological membranes are the fundamental active sites for many specific en-
Zyme activities, transport of ions, and hormonal receptors (Brenner 1984).
Changes in acyl-lipid saturation of membranes often occur in response to ex-
ternal stimuli (light, temperature, and chemicals) (Bishop et al. 1979, Bladocha
and Benveniste 1983, Gardner and Stowe 1979, Kuiper 1985). The physical
State of membrane lipids is important in determining the physiological function
of plant tissue (Brenner 1984, Raison and Chapman 1976, Wang 1982). The

Abbreviations: Cl, chemical ionization; DGDG, digalactosyl diglyceride; DMSO, dimethyl sulf-
oxide; El, electron impact; FAME, fatty acyl methyl esters; FID, flame ionization detector;
GC-Ms, gas chromatography-mass spectrometry; MDGD, monogalactosyl diglyceride; PC,
Phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphati-
dylinositol; TLC, thin-layer chromatography.



154 S. Y. Wang and M. Faust

composition of membrane lipids may also be a factor determining major biolog-
ical properties of membranes that in turn may influence biological changes,
such as dormancy or resumption of growth in plants. The plant bioregulant,
thidiazuron (N-phenyl-N'-1,2,3-thidiazol-5-ylurea), releases lateral buds from
dormancy and is correlated with an increase in unsaturated polar membrane fatty
acids (Wang and Faust 1988). A new class of synthetic cytokinins,
known as benzylnitroguanidines, induce a sequence of changes in the sterol
composition associated with bud break and bud development (Wang and Faust
1989). A decrease in the percentage of sitosterol and sitosteryl ester was ac-
companied by an increase in campesterol and stigmasterol at the beginning of
rapid growth. A decrease in the ratio of free sterols to phospholipids and an
increase in the ratio of campesterol + stigmasterol to sitosterol occurred upon
breaking of dormancy in apple buds induced by these compounds (Wang and
Faust 1988). The purpose of this study was to determine the changes of ga-
lacto- and phospholipid and their fatty acid composition in buds during bud break
and bud growth induced by nitroguanidines.

Materials and Methods
Plant Material and Treatments

Dormant apple seedling buds (Malus domestica Borkh, cv. York Imperial)
treated with 1-(3,5-dichlorophenyl)-3-nitroguanidine, or 1-(a-ethylbenzyl)-3-ni-
troguanidine, were used in this study (Wang and Faust 1989). Treatments
were applied to first five buds. All solutions were prepared in 2.5% DMSO plus
0.5% Tween-20 and applied directly to the buds with a brush until runoff. Five
buds were harvested from each plant. Triplicate bud samples of 0.5 g fresh
weight were collected at 5-day intervals over a 25-day period after treatment
with nitroguanidines.

Extraction, Fractionation, and Analysis of Polar Lipids

The methods of extraction, fractionation, and analysis of lipids in apple buds
have been reported (Wang and Faust 1989). Purified lipids were separated
into neutral, glycolipid, and phospholipid fractions by silicic-acid column chro-
matography on 100- to 200-mesh BioSil A (BioRad Laboratories, Richmond,
CA, USA). The glycolipid and phospholipid fractions were further separated
by TL.C on 20 x 20 ¢m glass plates precoated with a 250-um thickness of silica
gel 60 (EM Reagents, Darmstadt, FRG) using acetone—acetic acid—water
(100:2:1, v/v) and chloroform-methanol-acetic acid-water (85:15:10:3.5,
v/v), respectively. Individual galactolipids and phospholipids were identified
by cochromatography with authentic standards (Sigma Chemical Co., St.
Louis, MO, and Supelco, Bellefonte, PA, USA) and by detection with spray
reagents specific for hexose sugars (Christie 1973) or phosphate (Dittmer and
Lester 1964). Individuai lipid bands were scraped and eluted in chloroform—
methanol (2:1, v/v) followed by a Folch wash (Folch et al. 1957). Total fatty
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Fig. 3. Fatty acid composition (weight
% of total) of PC in apple bud tissue
during bud break induced by
nitroguanidines. For details see Fig. 1.
LSD (5%) for 16:0 = 2.01; 18:0 = 3.84;
18:1 = 5.12; 18:2 = 3.84; 18:3 = 5.76.

Fig. 4. Fatty acid composition (weight
% of total) of PG in apple bud during
bud break induced by nitroguanidines.
For details see Fig. 1. LSD (5%) for
16:0 = 8.32; 18:0 = 1.47; 18:1 = 3.52;
18:2 = 5.13; 18:3 = 5.72.

acids esterified to polar lipids were derivatized to fatty acyl methyl esters
(FAMEs) (Kates 1972) for FID-GC analysis (Wang and Faust 1988). n-Hepta-
decanoic acid was included in all samples as an internal standard, and methyl
heptadecanoate was used as an external standard. Individual FAMEs were
identified by comparison of retention times with those of authentic standards
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Fig. 5. Fatty acid composition (weight % of
total) of PE in apple bud tissue during bud
break induced by nitroguanidines. For
details see Fig. 1. LLSD (5%) for 16:0 =
3.75; 18:0 = 1.97; 18:1 = 1.98;18:2 =
4.59; 18:3 = 4.75.

Fig. 6. Fatty acid composition (weight
% of total) of PI in apple bud tissue
during bud break induced by
nitroguanidines. For details see Fig. 1.
LSD (5%) for 16:0 = 2.72; 18:0 = 5.83;
18:1 = 2.17; 18:2 = 3.83; 18:3 = 2.19.

(Supelco). This tentative identification of the major polar lipid fatty acids was
corroborated by further analysis of the FAMEs by gas chromatography —-mass
Spectrometry (GC-MS).

Confirmation of Fatty Acids by GC-MS

A Perkin-Elmer Sigma 3B gas chromatograph equipped with a fused silica cap-
illary column coated with a 0.25 uM film of DB-Wax (ISm X 0.32mmi.d.,J &
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W Scientific, Inc. Folsom, CA, USA) and an Extrel ELTQ-400-3 mass spec-
trometer were used to confirm individual FAMEs. Electron energies were 70
eV for EI and 300 eV for CI. Isobutane CI was used to obtain very intense
quasimolecular ions (M + 1)*. The isobutane pressure, and ion source condi-
tions were adjusted to obtain an ion intensity ratio of 10 to 1 for CI reagent ions
of m/z 57 to 43. Column temperature was held at 150°C for 3 min and then
programmed from 150-200°C at 5°C/min. Ultrapure helium was used as a car-
rier gas, and the head pressures of the helium carrier were 5 and 10 PSIG for
EI and CI, respectively. The injector port and GC-MS interface line tempera-
ture was 250°C.

Results and Discussion

Palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2), and a-linolenic
(C18:3) acids occurred in galacto- and phospholipids in apple bud tissue mem-
branes (Figs. 1-6). Palmitic acid, linoleic acid, and a-linolenic acid were pre-
dominate fatty acids. The identification of these fatty acid esters was estab-
lished by GC-MS. The full EI mass spectra of fatty acid esters was similar to
the authentic standards, as previously reported (Heller and Milne 1978). The
EI mass spectra of these compounds have weak molecular ions M*. Isobutane
CI has very intense quasimolecular ions (M + 1)*. The FAMEs of palmitate,
stearate, oleate, linoleate, and linolenate derived from extracted galacto- and
phospholipids were also confirmed by selected ion-monitoring using the mo-
lecular ions M+ and quasimolecular ions (M + 1)* in EI and CI, respectively.
The molecular ions M* in EI of palmitate, stearate, oleate, linolate, and lino-
leate were 270, 298, 296, 294, and 292, respectively. The quasimolecular ions
M + 1)* in CI of palmitate, stearate, oleate, linolate, and linoleate were 271,
299, 297, 295, and 293, respectively. The GC-MS relative retention times of
palmitate (5.93 min), stearate (9.52 min), oleate (9.80 min), linoleate (10.53),
and a-linolenate (11.63) were identical to the relative retention times of au-
thentic samples.

The lipid composition of the membrane obtained from apple buds was domi-
nated by galacto- and phospholipids. PC, MGDG, and PE represented a higher
percentage of the total lipids (Fig. 7). The galactolipid MGDG and DGDG)
and phospholipid (PC, PE, PG, and PI) changes and their fatty acid composi-
tion during bud break and bud growth induced by 1-(3,5-dichlorophenyl)-3-ni-
troguanidine were similar to those induced by 1-(a-ethylbenzyl)-3-nitroguani-
dine. Therefore, the changes of galacto- and phospholipids in apple buds in-
duced by nitroguanidines were expressed based on the fresh weight of the
buds. The effect of nitroguanidine, 1-(3,5-dichlorophenyl)-3-nitroguanidine, or
1-(a-ethylbenzyl)-3-nitroguanidine on bud break and bud growth has been re-
ported (Wang and Faust 1989).

An increase in the galacto- and phospholipid of the buds occurred during
bud break induced by nitroguanidines. The rate of increase was different for
each lipid. The increase was 3.75-fold for MGDG and 2.28-fold for DGDG. The
increase in phospholipid also paralleled the increase of bud weight during bud
development. The major galactolipid components in apple bud tissue were
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MGDG and DGDG. Linolenic (18:3) was the major acid in MGDG and DGDG
(Figs. 1, 2). MGDG and DGDG are the major chloroplast thylakoid lipid (Wil-
liams et al. 1983). Chloroplast development is accompanied by an increased
synthesis of galactosyl diglycerides and linolenic acid. They play an essential
role in the maintenance of the electron transport system (Williams et al. 1983).

PC, PE, PG, and PI contain mainly palmitic, linoleic, and linolenic acid,
which is typical for these phospholipids from higher plants. PC and PE were
the major class of phospholipids in apple buds, comprising 76.5% of the total
phospholipids (Fig. 7). PC is the major phospholipid constituent of almost
every plant tissue (Galliard 1973). PC contained highly unsaturated fatty acids,
mainly 18:3 (Fig. 3). PG was the only lipid to contain a significant amount of
Palmitic acid (16:0) in dormant buds (Fig. 4).

The relative percentages of 18:3 and 18:2 in PC and PG increased upon bud
break, along with decreases in the relative percentage of 16:0 (Figs. 3, 4). The
proportion of 18:2 in PE also increased at the expense of 18:3 and 16:0 during
bud break (Fig. 5). Phosphatidic acid was detected but was less than 1% of
total phospholipids (data not shown). PG and PI accounted for less than 25% of
total phospholipids. The proportions of these two phospholipids also increased
during bud break (Fig. 7). The changes of fatty acid in PI were less pronounced
than in other phospholipids. However, the relative percentage of 18:3 and 18:2
also increased upon bud break and bud growth (Fig. 6).

The ratio of the unsaturated fatty acids to the corresponding saturated fatty
acids increased in galacto- and phospholipids in apple bud tissue upon bud
break and bud growth after induction by 1-(3,5-dichlorophenyl)-3-nitroguani-
dine or 1-(a-ethylbenzyl)-3-nitroguanidine (Fig. 8). Among major lipid compo-
nents, MGDG contained the highest proportion of polyunsaturated fatty acids,
and PC had the highest ratio of unsaturated to saturated among all phospho-
lipids. The fatty acids of PG and PI were less unsaturated (Fig. 8). Inter- and
intramolecular mixing of different acyl chains affect the physical properties of
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lipids (Phillips et al. 1970, 1972). The lipid composition of the various mem-
branes of plant cells determines the fluidity of their lipid matrix. Increased
ratio of unsaturated/saturated enhances fluidity, facilitates the efflux of water,
and affects the physical state and functional properties of membranes (Brock-
erhof 1974, Oldfield and Chapman 1972). Changes in membrane permeability
could affect both the movement of stimulus and the transport of metabolites in
the membranes during bud break and bud growth.

Based on the results presented here, the ratio of unsaturated/saturated fatty
acids in galacto- and phospholipids increased during bud break. Whether
changes in membrane lipids associated with bud break and bud growth induced
by nitroguanidines are due to modification in the rate of their synthesis, or are
the result of degradation or conversion to other products, remains to be deter-

mined.
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